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Abstract
We review the transport properties of graphene, considering both the case of bulk graphene
and that of nanoribbons of this material at zero magnetic field. We discuss: Klein tunneling,
transport by evanescent waves when the chemical potential crosses the Dirac point, the
conductance of narrow graphene ribbons, the optical conductivity of pristine graphene,
and the effect of disorder on the DC conductivity of graphene.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Graphene [1, 2] consists of a monolayer of carbon atoms
forming a two-dimensional honeycomb lattice. Since this
material is a sheet of carbon atoms one atom thick it can be
seen as the ultimate thin film ever produced. This material
was isolated in 2004 at the University of Manchester, UK,
by the group of A K Geim. It has been intensively studied
due to its fascinating physical properties [3] and potential
applications. There are a number of qualitative reviews on
graphene physics in the literature, which will be helpful for
the general reader [4–7].

In a certain way, this material was the missing allotrope
of pure carbon materials, after the discovery of diamond,

graphite, fullerenes, and carbon nanotubes. Although the
Manchester team produced other two-dimensional systems [2],
graphene attracted wide attention from the community due to
its unexpected properties, associated with both fundamental
and applied research.

How was graphene first isolated? The original method of
graphene production is based on micromechanical cleavage of
the graphite surface—the so called Scotch tape method. In very
simple terms, a piece of graphite—the material from which
pencils are made—is gently rubbed on a piece of ordinary
Scotch tape. This produces carbon debris. The Scotch tape
with the debris is then pressed against a slab of oxidized silicon
(of 300 nm width). As a consequence the debris adhere to the
oxidized silicon wafer. Using an optical microscope one can
identify small crystallites of graphene on top of the oxidized
silicon. This ‘low tech’ procedure induced a revolution in
condensed matter physics.

A carbon atom has six electrons distributed in the atomic
orbitals as 1s2 2s2 2p2. The 1s electrons are essentially inert
and do not contribute to the chemical bond. In graphene, the 2s,
2px and 2py orbitals combine—or ‘hybridize’—to form three
new planar orbitals called sp2, each containing one electron.
The sp2 orbitals of different atoms then hybridize leading to the
formation of the σ bonds. These chemical bonds form an angle
of 120◦ between them and are responsible for the hexagonal
lattice structure of graphene. The chemical bonding of the
carbon atoms in graphene is maintained by these three orbitals,
and the mechanical properties of graphene are determined by
the rigidity of the bond. The reader certainly notices that one
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Figure 1. Honeycomb lattice of graphene, with a substituting
impurity at the A sublattice (the square). The unit cell vectors a1 and
a2 as well as the next nearest neighbor vectors δi (i = 1, 2, 3) are
also represented.

orbital remains, the pz orbital with one electron. This orbital is
perpendicular to the plane formed by the carbon atoms. As in
the case of the sp2 orbitals, the pz orbitals of different atoms
hybridize to form the π bonds. Each pz orbital contributes
one electron, and therefore graphene is a system with one
electron per lattice site (the carbon atoms define the sites in the
lattice). This is called a half-filled system. The π orbitals are
responsible for the unusual electronic properties of graphene.

As already mentioned, graphene is a two-dimensional
hexagonal lattice made of carbon atoms. The hexagonal lattice
is not a Bravais lattice. Instead it can be viewed as two
interpenetrating triangular lattices, each containing one set of
equivalent carbon atom sites—the A and B carbon sites (see
figure 1). One should note that from a chemical point of
view the two carbon atoms are exactly identical. Since the
unit cell contains two carbon atoms, one A and one B , the
energy spectrum originating from the π orbitals has two energy
bands—a valence band (at lower energies) and a conduction
band (at higher energies). As said before, graphene is a half-
filled system and therefore the valence band is completely
filled. In condensed matter physics, the electronic properties
of a system are determined by the nature of the spectrum close
to the last filled states, the energy of which defines the Fermi
level. Therefore, the physics of graphene is determined by the
nature of the energy spectrum close to the top of the valence
band and to the bottom of the conduction band. The interaction
of the π electrons with the hexagonal lattice gives graphene
a very unusual energy spectrum. The nature of the energy
spectrum will be clarified in due course.

Graphene’s electronic density can be tuned by an
external gate voltage (back gate) [1], from electrons to
hole charge carriers; the material is very stiff [8], with
high thermal conductivity [9], chemically stable and almost
impermeable to gases [10], can withstand large current

densities [1], and has ballistic transport over submicron
scales [1, 11, 12]. These properties alone, and its special
geometry, make it a very interesting candidate for applications
in nanoelectronics. Recent research has revealed many other
possible applications, such as in solar cell technology [13],
in liquid crystal devices [14], in single-molecule sensors [15],
and in the fabrication of nanosized prototype transistors [16].
Also in fundamental research this material is opening new
opportunities to test exciting physical effects [17, 18].

The second exciting result obtained for graphene, after the
field effect discovered by the Manchester group [1], was the
odd-integer quantum Hall effect [19, 20], also termed the chiral
quantum Hall effect. This spectacular effect was predicted by
two theoretical groups [21, 22], working independently. As
these two groups have shown, this new quantum Hall effect is
a consequence of the special nature of the electronic excitations
of graphene around the Fermi surface. Equally spectacular
is the fact that the quantum Hall effect in graphene can be
observed also at room temperatures [23].

If undoped (this is, with zero value of the back gate
potential), graphene has one conduction electron per carbon
atom. The lattice geometry and its corresponding symmetry
group determine the form of the electronic energy as a function
of the Bloch momentum. For the electronic density of
the undoped system, the Fermi surface is reduced to two
independent points in the Brillouin zone and these are labeled
K and K ′. These points are also named Dirac points, for
reasons that will become clear in what follows.

As regards the transport properties, one is particularly
promising. We refer here to its transparency to light, which
is essentially of 97.7%, from the infrared to the ultraviolet.
This makes graphene suitable for solar cell industry use, as
a transparent electrode. The prototype solar cell produced
in [13] explores the fact that only 2.3% of the light shining
on graphene is absorbed [24, 25]. This means that graphene
has an obvious advantage over the more traditional materials,
indium tin oxide (ITO) and fluorine tin oxide (FTO), which
have very low transmission of light for wavelengths smaller
than 1500 nm. Also these traditional materials have a
set of additional problems related to degradation and ion
migration [13] which are not shared by graphene. It is therefore
important to understand in some detail the mechanism of light
absorption in graphene.

The important aspect to address here is how the absorption
of light (or its transmission) changes with the wavelength of
the incoming light. For light from the infrared to the visible
range of the spectrum it is known that the optical conductivity
is essentially given by [21, 26–28]

σ(ω) = σ0 = π

2

e2

h
, (1)

that is, σ(ω) is constant over the infrared region of the
spectrum, given by universal constants, independently of any
material parameters. This is a very unusual situation for the
optical conductivity of a solid, which in general depends on
material parameters, such as the effective mass of the charge
carriers and their velocity at the Fermi surface. We shall
address in the remainder of the paper this and other aspects
related to the transport properties of graphene.
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2. Basic concepts

Let us first introduce some definitions for later use. The
honeycomb lattice has a unit cell represented in figure 1 by
the vectors a1 and a2, such that |a1| = |a2| = a, with
a � 2.461 Å. In this basis, any lattice vector r is represented
as

r = na1 + ma2, (2)

with n,m integers. In Cartesian coordinates one has

a1 = a0

2
(3,

√
3, 0), a2 = a0

2
(3,−√

3, 0), (3)

where a0 = a/
√

3 is the carbon–carbon distance.
If periodic boundary conditions are used, the Bloch states

are characterized by momentum vectors of the form

k = m1

N1
b1 + m2

N2
b2, (4)

with m1 and m2 a set of integers running from 0 to N1 − 1
and from 0 to N2 − 1, respectively. The numbers N1 and N2

are the number of unit cells along the a1 and a2 directions,
respectively. The total number of unit cells is, therefore,
Nc = N1 N2. The reciprocal lattice vectors are given by

b1 = 2π

3a0
(1,

√
3, 0), b2 = 2π

3a0
(1,−√

3, 0). (5)

The vectors connecting any A atom to its nearest neighbors
read

δ1 = a0

2
(−1,

√
3, 0) = 1

3
(a1 − 2a2), (6)

δ2 = a0

2
(−1,−√

3, 0) = 1

3
(a2 − 2a1), (7)

δ3 = a0(1, 0, 0) = 1
3 (a1 + a2). (8)

The Hamiltonian for pristine graphene can be written as

H0 = −t
∑

r

[b†(r)a(r)+ b†(r − a2)a(r)

+ b†(r − a1)a(r)+ h.c.], (9)

where a† (b†) are creation operators for the A (B) sites
(the spin index is omitted for simplicity). In the absence
of impurities the transport is ballistic. On the other hand,
impurities will induce a finite conductivity. The simplest way
of modeling the effect of impurities in graphene is by adding
an on-site energy which is randomly distributed over the lattice
points. The potential at a single site has the form

Vi = Ua†(0)a(0), (10)

and its effect on the conductivity of bulk graphene will be
studied later. In the particular case U → ∞, the scattering
term Vi represents a vacancy. It is well known [29] that the
formation of a vacancy will lead to some local distortion of the
carbon–carbon bonds. This effect is not incorporated in our
Hamiltonian.

For the pristine case the energy bands derived from this
Hamiltonian have the form [30]

E±(k) = ±t
√

3 + f (k), (11)

Figure 2. Energy spectrum (in units of t) with a zoom-in of the
energy bands close to one of the Dirac points.

with

f (k) = 2 cos(
√

3kya)+4 cos

(√
3

2
kya

)
cos

(
3

2
kx a

)
, (12)

where the plus sign applies to the upper (π ) and the minus
sign the lower (π∗) band. Both the valence and the conduction
bands are represented in figure 2. A number of interesting
and peculiar features emerge from this figure. First it is clear
that the valence and the conduction bands touch each other
at a number of finite momentum values. The momentum
values at which the two bands touch are termed Dirac points
(there are two in the Brillouin zone) and are represented by the
momentum vectors K and K ′. As a consequence, graphene’s
spectrum does not have an energy gap. On the other hand, since
the bands only touch at two momentum points the density of
states is zero at the corresponding energy. Therefore, graphene
is sometimes termed a zero-gap semiconductor with vanishing
density of states at the Fermi energy.

In figure 2 we also show a zoom-in of the band structure
close to one of the Dirac points. This dispersion can be
obtained by expanding the full band structure, equation (11),
close to the K (or K ′) vector as k = K + q, with |q| 	
|K| [30]:

E±(q) ≈ ±vF|q| + O((q/K )2), (13)

where q is the momentum measured relatively to the Dirac
points and vF represents the Fermi velocity, given by vF =
3ta/(2h̄), with a value vF � 1×106 m s−1. This result was first
obtained by Wallace [30]. We can therefore see graphene bands
as the ultrarelativistic limit of the famous Einstein equation
E = √

m2c4 + p2c2, with m = 0 and c = vF, that is, the
low energy excitations of graphene are described by massless
particles.

Since close to the Dirac point the dispersion is
approximated by equation (13) the expression for the density of
states per unit cell is given by (with a degeneracy of 4 included,
2 for spin and 2 for the two Dirac points)

ρ(E) = 2Ac

π

|E |
v2

F

(14)

where Ac is the unit cell area. Additionally, we can show [3]
that close to the K point, graphene electrons obey the 2D Dirac

3
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Figure 3. Top: schematic picture of the scattering of Dirac electrons
by a square potential. Bottom: definition of the angles φ and θ used
in the scattering formalism in the three regions I, II, and III.

equation:

−ivFσ · ∇ψ(r) = Eψ(r), (15)

whose wavefunctions have the form ψ(r) = ψ±,K (k)eik·r ,
with

ψ±,K(k) = 1√
2

(
e−iθk/2

±eiθk/2

)
. (16)

3. Klein tunneling

In this section we want to address the scattering of chiral
electrons in two dimensions by a square barrier [31, 32]. The
one-dimensional scattering of chiral electrons was discussed
earlier in the context of carbon nanotubes [33, 34].

We start by noticing that by a gauge transformation the
wavefunction (16) can be written as

ψK(k) = 1√
2

(
1

±eiθk

)
. (17)

We further assume that the scattering does not mix the
momenta around the K and K ′ points. In figure 3 we depict
the scattering process due to the square barrier of width D.

The wavefunction in the different regions can be written
in terms of incident and reflected waves. In region I we have

ψI(r) = 1√
2

(
1

seiφ

)
ei(kx x+ky y)

+ r√
2

(
1

sei(π−φ)

)
ei(−kx x+ky y), (18)

with φ = arctan(ky/kx), kx = kF cosφ, ky = kF sinφ and kF

the Fermi momentum. In region II we have

ψII(r) = a√
2

(
1

s′eiθ

)
ei(qx x+ky y)

+ b√
2

(
1

s′ei(π−θ)

)
ei(−qx x+ky y), (19)

with θ = arctan(ky/qx) and

qx =
√
(V0 − E)2/(v2

F)− k2
y, (20)

and finally in region III we have a transmitted wave only:

ψIII(r) = t√
2

(
1

seiφ

)
ei(kx x+ky y), (21)

with s = sgn(E) and s ′ = sgn(E−V0). The coefficients r , a, b
and t are determined from the continuity of the wavefunction,
which implies that the wavefunction has to obey the conditions
ψI(x = 0, y) = ψII(x = 0, y) and ψII(x = D, y) =
ψIII(x = D, y). Unlike for the Schödinger equation we only
need to match the wavefunction and not its derivative. The
transmission through the barrier is obtained from T (φ) = tt∗
and has the form

T (φ)

= cos2 θ cos2 φ

[cos(Dqx) cosφ cos θ ]2 + sin2(Dqx)(1 − ss′ sinφ sin θ)2
.

(22)

This expression does not take into account a contribution from
evanescent waves in region II, which is usually negligible,
unless the chemical potential in region II is at the Dirac energy.

Notice that T (φ) = T (−φ) and for values of Dqx

satisfying the relation Dqx = nπ , with n an integer, the
barrier becomes completely transparent since T (φ) = 1,
independently of the value of φ. Also, for normal incidence
(φ → 0 and θ → 0) and for any value of Dqx one obtains
T (0) = 1, and the barrier is again totally transparent. This
result is a manifestation of the Klein paradox [35] and does
not occur for non-relativistic electrons. In this latter case and
for normal incidence, the transmission is always smaller than
1. In the limit |V0| � |E |, equation (22) has the following
asymptotic form:

T (φ) � cos2 φ

1 − cos2(Dqx) sin2 φ
. (23)

In figure 4 we show the angular dependence of T (φ) for
two different values of the potential V0; it is clear that there
are several directions for which the transmission is 1. Similar
calculations were done for a graphene bilayer [31] with its
most distinctive behavior being the absence of tunneling in
the forward (ky = 0) direction. A review of Klein tunneling
is available [36] and its consequences have been observed
experimentally [37].

4
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Figure 4. Angular behavior of T (φ) for two different values of V0:
V0 = 200 meV, dashed line; V0 = 285 meV, solid line. The
remaining parameters are D = 110 nm (top), D = 50 nm (bottom)
E = 80 meV, kF = 2π/λ, λ = 50 nm.

4. The effect of evanescent waves in the transport at
the Dirac point

One of the most striking experimental transport results for
graphene is its minimum conductivity at the Dirac point. When
the chemical potential crosses the Dirac point, the density
of charge carriers is zero and therefore it should have zero
conductivity. This naive expectation is not what is measured
experimentally. In some experiments [41] the data shows that
the conductivity at the Dirac point has a finite value—the
conductivity minimum—of the order of

σmin = 4e2

πh
. (24)

There are two ways of obtaining this result. One is based on
the hypotheses that there is a finite concentration, albeit small,
of unitary scatterers in graphene [38, 39]. See also [40] for
an extended review. The other assumes that the transport is
due to evanescent waves in pristine graphene [41–43]. The
experiments support this latter view [44].

Let us consider the case of a finite graphene ribbon
of width L and length D, as represented in figure 5.
The wavefunctions of the free Dirac equation are given by
equation (17). The finiteness of the ribbon in the transverse
direction imposes that we have to combine two waves of
momenta ky and −ky in order to satisfy the boundary
conditions at the edges of the ribbon. The infinite mass
boundary conditions [46] give the following quantization rule
for the transverse momentum ky:

ky L = kn L = π

2
+ n, n = 0,±1,±2, . . . . (25)

The wavefunction of the confined electrons reads

ψkx ,n = eikx x

2
√

L

[(
1

seiθ(kx ,n)

)
eikn y

− i(−1)n
(

seiθ(kx ,n)

1

)
e−ikn y

]
, (26)

D

L

Figure 5. Scheme of a graphene ribbon with width L and length D
coupled to two leads also made of graphene.

with

θ(kx, n) = arctan
kn

kx
, (27)

and s = sgn(E), where E is the electron energy given by

E = ±vFh̄
√

k2
x + k2

n . (28)

As in the case of figure 3, we now assume that there is a
region of the ribbon, of width D, where a potential Vg is felt
by the electrons in that region. Imposing the continuity of the
wavefunction at x = 0 and D, the transmission amplitude t is
given by

t = (z2
II + 1)(z2

I + 1)

eikII D(zII − zI)2 + e−ikII D(1 + zIIzI)2
, (29)

where zI is given by

zI = s
kI + ikn√
k2

I + k2
n

, (30)

with kI given by

kI =
√
(E − eV0)2

v2
Fh̄2

− k2
n, (31)

where V0 is the potential applied to graphene in the regions
x < 0 and x > D. In the central region we have kII given by

kII =
√
(E − eVg)2

v2
Fh̄2 − k2

n . (32)

We will be interested in studying the transport when the
chemical potential crosses the Dirac point; this makes Vg = 0.
The transport through the central region can only be maintained
by evanescent waves. This is explained in figure 6. Since the
chemical potential of the leads, located at x < 0 and x > D,
is at zero energy we have to compute kI and kII at E = 0. This
gives propagating modes in the leads for kn values such that
kn < e2V 2

0 /(v
2
Fh̄2). In the central region, on the other hand,

we have kII = ikn, that is the modes are evanescent waves.
In this regime the transmission amplitude for each propagating
mode in the leads is given by

tn = k2
I + ikIkn

cosh(kn D)k2
I − k2

n sinh(kn D)+ ikIknekn D
. (33)

5
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Figure 6. Energy of Dirac electrons in different regions. For x < 0
and x > D the energy levels are shifted up in energy and therefore
there is a finite density of holes at zero energy. In the central region
the potential is zero and the chemical potential crosses the Dirac
point.

system is therefore given by

G = 4e2

h

N∑

n=0

|tn|2, (34)

where N is the maximum number of propagating modes in the
leads. The conductivity of the ribbon is then given by

σ = D

L
G. (35)

equation (34) can be understood from figure 6, since it makes
explicit the transverse modes characterized by kn ; the finiteness
of the ribbon produces a number of bands which are all
crossed by the chemical potential as long as the condition
kn < e2V 2

0 /(v
2
Fh̄2) is satisfied. In the case of figure 6 the

potential V0 is negative.
We can see in figure 7 that the conductivity σ tends to the

value σmin for large values of the ratio L/D. The conductivity
grows away from its minimum value as more electrons are
injected into the central region by changing the gate potential
Vg.

The curve obtained for G due to evanescent waves
should be compared with that obtained using Green’s function
methods adapted for small ribbons. For comparison we give
in figure 8 the transmission T (E) for very narrow ribbons
together with the corresponding bands [45]. Both zigzag and
armchair ribbons are shown. In the case of armchair ribbons,
when the number of rows is a multiple of 3 the system is
gapless. The four left panels of figure 8 refer to armchair
ribbons, the other panels to zigzag ones. At a given value of
the chemical potential μ the conductance G is obtained from
G = 4e2T (μ)/h.

5. Optical conductivity of pristine graphene

It was found by Peres et al that the infrared conductivity of
graphene is essentially independent of the frequency [39], and

Figure 7. Conductivity of graphene. Left panel: conductivity as a
function of the ratio L/D, with L the width of the ribbon and D its
length. Right panel: conductivity as a function of gate voltage Vg for
a fixed value of L/D. The quantity g0 equals 4e2/h.

given by

σ(ω) � π

2

e2

h
. (36)

This result was later reproduced by other groups [47–51]. Later
experiments confirmed this result [28, 52].

The calculation of σ(ω) is computed using the Kubo
formula. This formula is given by

σxx (ω) = 〈 j D
x 〉

iAs(ω + i0+)
+ �xx (ω + i0+)

ih̄ As(ω + i0+)
, (37)

with As = Nc Ac the area of the sample, and Ac = 3
√

3a2
0/2

(a0 is the carbon–carbon distance) the area of the unit cell, from
which it follows that

Re σxx (ω) = Dδ(ω)+ Im�xx (ω + i0+)
h̄ωAs

, (38)

and

Im σxx (ω) = −〈 j D
x 〉

Asω
− Re�xx (ω + i0+)

h̄ωAs
, (39)

where D is the charge stiffness reading

D = −π 〈 j D
x 〉

As
− π

Re�xx (ω + i0+)
h̄ As

. (40)

The function �xx (ω + i0+) is obtained from the Matsubara
current–current correlation function, defined as

�xx (iωn) =
∫ h̄β

0
dτ eiωnτ 〈Tτ j P

x (τ ) j P
x (0)〉. (41)

For graphene the current operator reads

j P
x = t ie

h̄

∑

R,σ

∑

δ=δ1−δ3

[δxa†
σ (R)bσ (R + δ)− h.c.], (42)

the function Im�xx (ω+ i0+) in the Kubo formula is given by

Im�xx (ω + i0+) = t2e2a2

8h̄2

×
∑

k

f [φ(k)][nF(−t|φ(k)| − μ)− nF(t|φ(k)| − μ)]
× [πδ(ω − 2t|φ(k)|/h̄)− πδ(ω + 2t|φ(k)|/h̄)], (43)

6
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Figure 8. Transmission T (E) and energy bands for different types of graphene ribbons. The conductance is given by G = 4e2T (μ)/h.

where nF(x) is the usual Fermi distribution, μ is the chemical
potential, and the function Re�xx (ω + i0+) is given by

Re�xx (ω + i0+) = − t2e2a2

8h̄2
P

×
∑

k

f [φ(k)][nF(−t|φ(k)| − μ)− nF(t|φ(k)| − μ)]

× 4t|φ(k)|
ω2 − (2|φ(k)|)2 , (44)

with

f [φ(k)] = 18 − 4|φ(k)|2 + 18
[Reφ(k)]2 − [Im φ(k)]2

|φ(k)|2 ,

(45)
and P denoting the principal part of the integral. The graphene
energy bands are given by ε(k) = ±t|φ(k)|, with φ(k)

defined as

φ(k) = 1 + ek·(δ1−δ3) + ek·(δ2−δ3). (46)

Equation (44) is completely general. Since we want to derive
an expression for σ(ω) valid up to visible frequencies, we
need to extend the density of states away from the Dirac point.
Doing this we obtain [53]

ρ(E) � 2E√
3π t2

+ 2E3

3
√

3π t4
+ 10E5

27
√

3π t6
. (47)

Using equation (47) in (44) we obtain for the optical
conductivity the approximate result

Reσxx (ω) = σ0

(
1

2
+ 1

72

(h̄ω)2

t2

)

×
(

tanh
h̄ω + 2μ

4kBT
+ tanh

h̄ω − 2μ

4kBT

)
. (48)

In the case of μ = 0 this expression is the same as in
Kuzmenko et al [28] and in Falkovsky et al [54–56] if in both
cases the (h̄ω/t)2 term is neglected.

We can then use the expression obtained for the
conductivity to compute the transmission of light through

Figure 9. The figure shows a photo of a graphene membrane as seen
with an optical microscope. Reproduced with permission of [24].
Copyright 2008, by the AAAS.

graphene. The calculation uses a Fresnel type of analysis,
including the fact that graphene may dissipate a percentage of
the incident light. Working this out we obtain [53, 57]

T = 1

(1 + πα/2)2
� 1 − πα, (49)

where α = e2/(4πε0ch̄) is the fine structure constant. That
graphene and its bilayer are transparent to visible light can
be seen in figure 9, which shows a picture of a graphene
membrane taken with an optical microscope. The picture
shows a graphene membrane covering a hole in a metallic
scaffold. We can see that a part of the hole is not covered
with graphene and the other part is covered with graphene and
bilayer graphene. The transmittance of light changes as we
move from air to the bilayer. The experimental values for T
are given in figure 10 and they agree well with equation (49).
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Figure 10. The figure shows the measured transmittance of graphene
T , which agrees well with equation (49), as seen in the inset.
Reproduced with permission of [24]. Copyright 2008, by the AAAS.

6. Conductivity of disordered graphene

We now want to consider the effect of impurities on the DC
conductivity of graphene. We will consider two kinds of
impurities: unitary scatterers and charged impurities.

6.1. Unitary scatterers

The physical origin of mid-gap states in graphene is varied.
Cracks, edges, vacancies [58] are all possible sources for mid-
gap states. From an analytical point of view, these kinds of
impurities (scatterers) are easily modeled by considering the
effect of vacancies. We stress, however, that this route is
chosen due to its analytic simplicity.

The effect of mid-gap states on the conductivity of
graphene was first considered by Peres et al [39] for the case of
a half-filled system. Considering the effect of a local scattering
potential of intensity U , such as that given by equation (10), the
electronic Green’s function in the Dirac cone approximation
has the form [60, 61]

G =

(
iωn −�(iωn) −tφ(k)

−tφ∗(k) iωn − �(iωn)

)

[iωn −�(iωn)][iωn −�(iωn)] − t2|φ(k)|2 , (50)

with the retarded self-energy

�ret
unit(ω) = ni U

h̄

1 − U F(ω)− iUπR(ω)

[1 − U F(ω)]2 + [UπR(ω)]2
, (51)

where the functions F(ω) and R(ω) are defined by

1

h̄ Nc

∑

k

G(k, ω + i0+) = F(ω)− iπR(ω). (52)

Mid-gap states are obtained by making the limit U → ∞,
which corresponds to the unitary limit. Clearly, R(ω) is the

Figure 11. Density of states of graphene in the presence of mid-gap
states. The CPA calculation is compared with a numerical exact
method. The concentration of impurities is ni = 0.005 and
ni = 0.01. Here and in the following figures we use t = 3 eV and a
cutoff energy of D = 7 eV.

density of states per spin per unit cell. For latter use, we
write the self energy due to unitary scatterers, �ret

unit(ω), as a
sum of real and imaginary parts, �ret

unit(ω) = �′(ω) + i�′′(ω)
(note that �′′ > 0). The functions F(ω) and R(ω) are
determined self-consistently through a well defined numerical
procedure [60, 61].

In figure 11, we compare the density of states computed
using the coherent potential approximation (CPA) equations
with that obtained from a numerical exact method [59]. It is
clear that the CPA captures the formation of mid-gap states in a
quantitative way. The main difference is the presence of a peak
at zero energy in the exact density of states, whose measure is
quantitatively negligible.

6.2. Charged scatterers

It has been argued that charged impurities are crucial for
understanding the transport properties of graphene on top of a
silicon oxide substrate [62–64]. In what follows, we compute
the electronic self-energy due to charge impurities, using
second-order perturbation theory in the scattering potential.
Electronic scattering from an impurity of charge eQc leads to
a term in the Hamiltonian of the form

V = −
∑

r,σ

Qce2

√
d2 + r2

[a†
σ (r)aσ (r)+ b†

σ (r)bσ (r)], (53)

where d is the distance from the impurity to the graphene plane.
In momentum space, V reads

V = 1

Nc

∑

p,q,σ

V0(q)[a†
σ (p)aσ (p+q)+b†

σ (p)bσ (p+q)], (54)

where V0(q) reads

V0(q) = −
∑

r

Qce2eir·q
√

d2 + r2
. (55)

With G0(k, iωn) the bare and G(k,p, iωn) the full Green’s
functions, the Dyson equation due to one Coulomb impurity

8
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reads

G(k,p, ωn) = δk,pG0(k, iωn)

+ G0(k, iωn)
1

h̄ Nc

∑

k′
V0(k − k′)G(k′,p, ωn). (56)

If we consider a finite density of charged impurities per unit
cell, nC

i , and incoherent scattering between impurities, the
second-order self-energy is given by

�ret
Coul(k, iωn) = nC

i

h̄2 Nc

∑

p

V 2(k − p)G0(p, iωn), (57)

where a term proportional to V (0) was absorbed in the
chemical potential, since it corresponds to an energy shift
only. Note that we have replaced V0(q) by V (q), which
corresponds to including the effect of electronic screening in
the calculation. The form of V (q) is (in SI units) [65, 66]

V (q) = − Qce2

2ε0εAc

e−qd

q + γ
, (58)

where ε = 3.9 is the silicon oxide relative permittivity and γ
is given by

γ = ρ(μ)e2

2ε0εAc
, (59)

where ρ(μ) is the self-consistent density of states as computed
from the CPA calculation (Ac = 3

√
3a2

0/2 is the area of the
unit cell).

The self-energy (57) is dependent both on the momentum
k and on the frequency. However, we are interested in
the effect of the self-energy for momentum close to the
Dirac point. Within this approximation the imaginary part
of the retarded self-energy becomes diagonal and momentum
independent, reading (d � 0)

h̄ Im�ret
Coul(K, ω) � −nC

i

Q2
ce4

4A2
cε

2
0ε

1√
3t2

|h̄ω|
(

2|h̄ω|
3ta

+ γ

)−2

.

(60)
Let us now discuss the conductivity as a function of the

gate voltage Vg, which relates to the chemical potential as Vg ∝
μ2. In figure 12 we show σ as a function of Vg considering both
charged impurities and short range scatterers. It is well known
that when one considers only charged impurities, σ is linear
in Vg [62, 63, 65, 66], being zero at the Dirac point. Further,
within the first Born approximation the conductivity does not
show particle–hole asymmetry. A more rigorous treatment
shows that even Coulomb impurities can lead to particle–hole
asymmetry [67–69].

On the other hand, considering short range impurities with
a finite strength U a clear particle–hole asymmetry develops,
with a strong suppression of the conductivity in the hole or
particle sector, depending on the sign of U . If the density
of short range impurities decreases, the conductivity, albeit
mostly controlled by charged impurities, still has fingerprints
of the finite U scatterers, due to the asymmetry between the
hole and particle branches.

If we suppress the scattering due to charged impurities,
which would be the case in suspended graphene, only the

Figure 12. Upper panels: conductivity σ(Vg), in units of
σ0 = πe2/(2h), for different values of U . Lower panels:
conductivity σ(μ) including the effect of charge scatterers. The
concentration per unit cell of short range scatterers is ni = 10−3 and
that of charged ones is nC

i = 10−4. The dashed–dotted line is the
conductivity for unitary scatterers of concentration ni = 10−3 with
zero density of charge scatterers.

scattering due to short range scatterers survive. In this case it
should be possible to decide whether the short range impurities
are in the unitary regime, in which case the conductivity
will symmetric relatively to the Dirac point, or having a
finite U value, in which case an asymmetry between the
hole and the particle branches of the conductivity curve
should be observed. We note that asymmetric conductivity
curves were recently observed [70]. Other groups have also
reported theoretical results on the particle–hole asymmetry of
graphene’s conductivity [67–69, 71, 72].

7. Summary

We have reviewed several aspects of the transport properties of
graphene, considering both ribbons and bulk graphene. In the
ribbon case, the transport is sensitive to the transverse modes
of the system. For bulk graphene, the Dirac spectrum mainly
controls the behavior of the transport properties. We have
seen that in the case of disordered graphene the existence of
scatterers with a finite strength induces an asymmetry between
the hole and particle region of the conductivity.
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